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Abstract

Certain details of the additive manufacturing process known as selective laser melting (SLM) affect
the performance of the final metal part. To unleash the full potential of SLM it is crucial that the
process engineer in the field receives guidance about how to select values for a multitude of process
variables employed in the building process. These include, for example, the type of powder (e.g.,
size distribution, shape, type of alloy), orientation of the build axis, the beam scan rate, the beam
power density, the scan pattern and scan rate. The science-based selection of these settings con-
stitutes an intrinsically challenging multi-physics problem involving heating and melting a metal
alloy, reactive, dynamic wetting followed by re-solidification. In addition, inherent to the process
is its considerable variability that stems from the powder packing. Each time a limited number of
powder particles are placed, the stacking is intrinsically different from the previous, possessing a
different geometry, and having a different set of contact areas with the surrounding particles. As
a result, even if all other process parameters (scan rate, etc) are exactly the same, the shape and
contact geometry and area of the final melt pool will be unique to that particular configuration.
This report identifies the most important issues facing SLM, discusses the fundamental physics
associated with it and points out how modeling can support the additive manufacturing efforts.
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Preface

Additive manufacturing (AM) techniques such as selective laser powder melting (SLM) hold
great promise as the next big breakthrough in manufacturing. By building up a part step by step,
using computer design and control, one could in principle attain very high precision and fidelity
without having to compromise on the design for reasons of traditional manufacturing restrictions
such as molding. In addition, it enables the production of replacement parts, remotely, and on
demand, reducing the need for stocking large numbers of items. Because the part is build up
small amounts of volume at a time, it is also feasible to embed specific small features (”barcodes”)
into the part that may not be visible form the outside, but allow for unambiguous identification.
Similarly, it is conceivable that by tailoring the metal alloy one could modify or strengthen paretic
in certain locations but not others. As the process is fully computer controlled such modifications
and special features can be included without adding to the overall cost.

While AM is sometimes perceived as a brand new methodology, in reality its basic operation
is about twenty years old. Initially it was known as rapid prototyping, highlighting one particu-
lar application: the ability to move quickly from shape to part without having to develop more
involved production methods such as casting. Large manufacturers of aircraft engine parts, Gen-
eral Electric and Siemens (Germany) currently have actual active production plants based on AM
techniques. For example, General Electric has committed to AM produce 40,000 valves for the
Leap aircraft engine. Similarly, Siemens is also producing high value parts for engines. Neither
company expects to see traditional manufacturing methods completely give way to AM, but both
have made very significant investments it its development and application. Certainly, in the area
of older aircraft there appears to be ample opportunity for AM, as there are large numbers of parts
for which there are limited replacements. Here AM could play a valuable role by being able to
quickly produce replicas of existing parts, using computer-aided design.

To fully realize the potential of SLM requires major advances in the areas of quality control and
process control. A thorough understanding of the underlying physics of SLM and the development
of robust and fast modeling tools are considered to be the key ingredients of a science-based pro-
gram to support SLM. It is relatively straightforward to take a Computer-aided design (CAD) file
of a particular object, say a wrench, and use Titanium powder particles to make a metal rendition
of the wrench. It will have the shape and the dimensions specified in the CAD file. However, what
is difficult is to predict the performance of the wrench. When and how will it break when put under
stress is a question that is not straightforward to answer.

Experience has shown that the quality of the final part depends on a long list of materials
properties (e.g., type of alloy, powder particle size) , as well as processing variables (laser beam
power, scan rate, scan pattern, build direction). It is the goal of the industry, as expressed by
the new government initiative America makes, the National Additive Manufacturing Innovation
Institute, to facilitate the rapid development of modeling tools to enable the rational design of the
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SLM process. Ultimately, and ideally, it would be advantageous to develop a virtual SLM machine,
with which an engineer could test a design for a certain part, and discover how to optimize the SLM
process to deliver a part that meets the specifications. From the manufacturing process settings, and
associated materials properties on various length scales, the engineer is ultimately able to examine
when and where the part will break under a certain load. Using those results, improved designs can
be developed to optimize the parts design and manufacture. The latter two aspects, quite distinct
in traditional manufacturing, will tend to merge somewhat in SLM because of the scale and the
process underlying the additive manufacturing approach. A concept all too familiar in the world
of living structures.

A crucial first step in the modeling of SLM is the prediction of voids and the development of a
strategy to reduce their occurrence. Naturally, the presence of unintentional voids in the final part
help to reduce the strength and the overall performance. To predict the void formation (and void
size and location) one needs to have a realistic model of the basic dynamic wetting process that
takes place when a small section of the powder melts, while in contact with surrounding powder
and re-solidified metal surfaces. Void formation ultimately is a manifestation of a stochastic event
feeding up information of local packing details of powder particles to the next larger length scale,
the dimension of the melt pool. Thus, any realistic model will need to start at the point of melting,
wetting and spreading of the melt pool. It should predict the developing melt pool and its final
shape (and hence voids), and its connection with the rest of the powder bed, which will act as
boundary conditions (for mass and thermal transport).

Only once the dynamic wetting and void formation problem problem is tackled is one in a
position to consider more detail about the volume element that was converted from powder to a
frozen melt pool in contact with its surroundings. For instance, from the thermal history of that
melt pool (fast re-solidification) one could attempt to predict grain-size defect density and hence
mechanical responses and ultimately possibly aging. However, it is not productive to focus on
predicting detailed grain structure information, say, as long as one is unable to predict the presence,
size and location of voids.

9
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Summary

The processes that underly the additive manufacturing technique known as selective laser melt-
ing include melting, re-solidification and and dynamic wetting of liquids. The latter is a process
that, in general, operates on multiple length scales stretching from the molecular scale (e.g., con-
tact line, surface reaction) to the mseoscopic (e.g., the powder particle level) to the macroscopic
(e.g., an entire metal joint). In this report we focus on an aspect of dynamic wetting that greatly
influences the additive manufacturing process, namely the formation of voids. Whereas an isolated
collection of metal particles heated beyond the melting point would reliably form a single spherical
liquid-metal drop, a similar collection surrounded by, and in touch with, solid powder particles as
well as other proximate metal surfaces will adopt a shape and surface that might include voids. In
both cases, the final shapes and contact areas are controlled by capillary forces, but the outcomes
are quite different. The isolated collection that forms a single drop, has only one (liquid-vapor) in-
terface, that is convex (i.e., spherical). In contrast, the environment of the other collection presents
a complex surface to the molten metal, that can result in actively wicking of the droplet and a
complex final shape.

Dynamic wetting is not an easy process to model on the meso scale (powder particle scale).
That is because in additive manufacturing applications it takes place on a small scale set by the
size of the particles that make up the metal alloy powder (of the order of 30-100µm), involves
curved surfaces, surface roughness, compositional changes, and strong coupling to thermal pro-
cesses (melting, conduction and re-solidification).

In this report we discuss the general problem of void formation and address the effect of compo-
sitional change on wetting in the context of thermodynamics and dynamics (i.e., Lucas-Washburn
equation). Finally, we provide recommendations for the modeling of the selective laser melting
technique, setting priorities for the different multiscale aspects of a comprehensive materials mod-
eling program.
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Chapter 1

Introduction

In this paper we discuss the fundamental phenomena underlying selective laser melting of
metal powders. The additive manufacturing (AM) process of selective laser powder melting is
conceptually simple. It involves placing a powder sample and heating it with an energy source,
such as a laser or an electron beam. The supplied heat will be sufficient to initiate melting of
the powder particles. However, the melt pool will quickly solidify once the heat source has moved
away from the volume element. This is so because the element is small (linear dimensions of about
100 microns) and is in contact with surrounding powder as well a previously solidified elements.

The goal of the manufacturing process is to convert a metal powder into a solid metal of a
desired shape and size by repeatedly adding small amounts of material at a time. The challenge
is to make the powder-solid conversion one of high fidelity: well adhered to surrounding solid,
and free of entrapped voids. The latter are the number one difficulty faced in this type of AM, as
voids become weak spots that initiate cracks and ultimately bring about failure of the part. The
void fraction of a given manufactured part can in principle be determined by performing a density
measurement, upon completion of the part. However, the objective is to avoid all void formation
or, if they do occur, during the manufacturing process to spot them and treat them in situ.

The formation of voids is part of the capillary flow process that takes place when a small volume
of the packed powder is rapidly converted into liquid. Because the surrounding powder presents as
a porous material to the newly formed droplet, capillary phenomena dictate the flow of the droplet,
the shape of the droplet and its contact area with its surroundings, and thus the possible formation
of a void. At the outer surface of a part, the same physical processes will determine the surface
finish of the part. It can be easily appreciated that since the powder placement will vary from
location to location (as this is a reflection of the variability of the powder bed) that void formation,
or the risk thereof, will continuously vary also. To improve the quality of parts, therefore, it will
be key to learn how to reduce void formation and how to manage it if it does occur. Given the
overwhelmingly large number of process variables (including: powder characteristics, laser scan
rate, beam spot size, energy density) it is crucial that we develop a good understanding of the
basic underlying phenomena (capillarity on a small scale), and that in the future we move toward
a virtual manufacturing capability that assists the process engineer in the task of determining the
optimal settings for the manufacturing process.

In turn, the contact area will determine how fast the droplet cools. This latter process will
ultimately determine the grain structure, morphology and defect density of the re-solidified droplet.
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Chapter 2

Capillary Phenomena

Problem statement

The liquid drop that is formed once the heat source (e.g., the electron beam or laser beam)
sufficiently heats the metal alloy powder, moves under the action of capillary forces. In general, in
equilibrium, a liquid in contact with a solid surface will adopt a position and shape that corresponds
to a configuration of lowest surface free energy (see figure 2.1). This includes the possibility of the
liquid traveling, that is, its center of gravity may be undergoing translation. For instance, a liquid
drop in contact with a capillary that is tapered, could move to the portion of the capillary that is
most narrow.

The study of the equilibrium behavior of capillary fluids (i.e., capillary rise) has a a long history
that goes back to the 18th century (Laplace) when experimentalists established the relationship
between the contact angle and capillary rise, and contact angles and surface tensions (Young).
In the early part of the twentieth century Lucas and, independently, Washburn considered the
capillary driven flow inside capillaries. They established that the infiltration length is proportional
to the square root of time elapsed.

In many contexts, including dynamic wetting in the SLM setting, an additional consideration
appears and that is the role of reactive or dissolutive wetting. That is, wetting and spreading
in the presence of changing interfacial composition. The effect on infiltration rate can be quite
pronounced. In this chapter we consider capillary flow under circumstances of dissolution.

Introduction

The Lucas-Washburn equation describes the capillary driven flow into a pore or channel. It
considers low Reynolds number laminar flow, or Hagen-Poiseuille flow, in a capillary and assumes
that the pressure gradient is due to the capillary pressure difference across a curved surface.

The Washburn equation relates the infitration distance, L, and time, t, for capillary flow in a
channel of diameter D, viz.,

15



Figure 2.1. A schematic of the selective laser melting (SLM)
process. A collection of powder particles are stacked on the left.
A heat source (laser or electron beam) hits a sub set of the powder
particles (indicated dark red). As these particular particles melt,
in the presence of bystander particles (light red), the shape of the
liquid droplet is determined by capillary flow (schematic on the
right). In the example shown, a void is left that can persist, sta-
bilized by surface energy considerations involving the bystander
particles. This kind of void formation can compromise the perfor-
mance of the final part.

Figure 2.2. A schematic of the selective laser melting (SLM) pro-
cess showing the build-up of a wall as a result of mulltiiple passes
consisting of powder stacking and laser melting. As described in
figure 2.1, capillary flow will determine the shape of each molten
and re-solidified region. In the schematic shown, this is manifested
in the surface finish of the part.
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L2 =
Dγlvcosθ

4η
t (2.1)

where γlv is the liquid-vapor surface tension, θ is the contact angle and η is the viscosity.

Flow though cylinders.

We consider laminar flow through a circular cylinder with its axis along the x−direction. The
Hagen-Poiseuille equation (which results from applying the no-slip boundary condition at the wall)
links the velocity profile through a cylinder of radius R to the pressure differential ∆p over the
length of the liquid column L:

vx = − 1
4η

∂ p
∂x

(R2− r2)

=
1

4η

∆p
L
(R2− r2) (2.2)

from this expression we obtain the average velocity as

< vx >≡ (πR2)−1
∫ R

0
dr2πrvx = R2

∆p/8ηL (2.3)

For capillary flow into a cylinder the average velocity, < vx >, represents the velocity of the
meniscus, or the rate of change of the infiltration length. Hence

dL
dt

=
∆pR2

8ηL
(2.4)

or

LdL =
∆pR2

8η
dt (2.5)

which can be integrated from the initial time t0 and the initial position L0 to give,

L2−L2
0 =

∆pR2

4η
(t− t0) (2.6)
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Specializing to a horizontal channel (no gravitational effects), a no-slip boundary condition and
a pressure differential equal to the capillary pressure, we identify ∆p = 2γlvcosθ/R [using the fact
that the radius of curvature of a spherical meniscus equals (1/Ry +1/Rz)

−1 = R/2] :

L2 =
Rγlvcosθ

2η
(t− t0)+L2

0 (2.7)

which is, in essence, equation 2.1.

Flow through slits.

Next, we consider laminar flow between parallel plates, i.e., through a slit with the direction
of flow along the x−direction. The Hagen-Poiseuille equation (which results from applying the
no-slip boundary condition at the wall) links the velocity profile through a slit of diameter D to the
pressure differential ∆p over the length of the liquid column L:

vx = − 1
2η

∂ p
∂x

((
D
2

)2

− y2

)

=
1

2η

∆p
L

((
D
2

)2

− y2

)
(2.8)

from this expression we obtain the average velocity as

< vx >≡ D−1
∫ D/2

−D/2
dy vx = D2

∆p/12ηL (2.9)

For capillary flow into a slit the average velocity, < vx >, represents the velocity of the menis-
cus, or the rate of change of the infiltration length. Hence

dL
dt

=
∆pD2

12ηL
(2.10)

This can be integrated from the initial time t0 and the initial position L0 to give,

L2−L2
0 =

∆pD2

6η
(t− t0) (2.11)
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Specializing to a horizontal channel (no gravitational effects), a no-slip boundary condition
and a pressure differential equal to the capillary pressure, ∆p = 2γlvcosθ/D [using the fact that the
radius of curvature of a cylindrical meniscus equals (1/Ry)

−1 = D/2] :

L2 =
Dγlvcosθ

3η
(t− t0)+L2

0 (2.12)

Testing the Washburn equation for nanosized channels.

To test equation 2.12 for capillary flow into molecularly sized slit-pores, Webb and Hoyt
(WB)[3] performed molecular dynamics simulations of a Cu liquid flowing into a slit-like cap-
illary made of Ni. Two types of simulations were run: nondissolutive (NDI) where the Ni atoms
were not allowed to diffuse, and dissolutive (DI) where Ni atoms were fully dynamic and allowed
to dissolve amongst the Cu (and vice versa). WB collected their simulation data in a graph of L2

versus t (figure 6 of WB [3]), which shows that L2 is linear with time for all four cases studied.

WB find that the slopes of the line are indeed close to best estimates of the coefficient dγcosθ/4η .
The exception is one case, labeled [d], for which the measured slope is about twice as large. WB
proceed by proposing an additional driving force equation 2.6, leading to

L2 =
Dγlvcosθ +DQdiss

3η
(t− t0)+L2

0 (2.13)

Invoking an additive driving force in the empirical manner of WB rationalizes an increased
infiltration rate, but it is important to investigate its consequences. In particular, equation 2.13
predicts that capillary flow takes place even if the contact angle is greater than 90 degrees, i.e.
negative cosθ , as long as |γlvcosθ |< Qdiss, and this does not appear to be physical.

The justification for the additional term as well as its stated functional form, i.e., its dependence
on D, is the focus of the remainder of this report. Below we will revisit the assumptions underlying
the Washburn equation, investigate the implications of equation 2.13 and propose calculations or
experiments that will be able to shed light on the situation.

The validity of equation 2.13.

Recall from the short derivation presented above, that it is the pressure difference ∆p= 2γlvcosθ/D
across the curved liquid-vapor interface that gives rise to the flow in a slit-like channel. by analogy,
the WB suggestion amounts to introducing an additional pressure difference, i.e., ∆pdiss ≡Qdiss/D
into equation 2.2. In what follows we will explore the consequences of such a term in detail. To
help clarify the subsequent discussion we will first highlight the basic physics and assumptions
that underlie the Washburn equation.

19



The derivation of Washburn’s equation starts with the the Navier-Stokes equation for an incom-
pressible fluid,

(~v ·∇)~v+
∂~v
∂ t

= ρ
−1

∇p+~g+ηρ
−1

∇
2~v (2.14)

where ρ denotes the fluid density. Under the assumptions that 1) the flow is steady state, 2) the
radial and swirl components are zero, and 3) absence of gravity, this equation simplifies to

∇p = η∇
2~v (2.15)

For steady-steate flow through a straight cylinder, the velocity profile~v = (vx,0,0) is a function
of r only, and the above version of the Navier-Stokes equation further reduces to:

∂ p
∂x

=
1
r

∂

∂ r

(
r

∂vx

r

)
(2.16)

If one assumes no-slip boundary conditions at the wall the solution to this differential equation
will be equation 2.2, or Hagen-Poiseuille flow.

As outlined in the section above, the Washburn equation results when the pressure difference,
∆p, is equated with the Laplace pressure. The latter pressure is an equilibrium pressure (strictly:
pressure difference) which can be measured directly. Specifically, in the presence of gravity, cap-
illary rise will establish a pressure balance (hydrostatic equilibrium) between the Laplace pressure
and the weight of a fluid column. This leads to a well-defined equilibrium height h for a given
capillary size, liquid-vapor tension, and contact angle.

Let us now return to equation 2.13, in order to stay consistent with the physics underly-
ing the Washburn equation, stipulating equation 2.13 forces one to identify the dissolution pro-
cess with a pressure difference (or alternatively a pressure gradient, ∂ pdiss/∂x, since ∆pdiss =∫ L

L0
dx ∂ pdiss/∂x = −2Qdiss/D). In addition, this pressure difference, ∆pdiss, must represent an

equilibrium quantity, and one would thus expect to be able to device an experiment to measure
its magnitude. In the present context, it is natural to turn to a capillary rise experiment. Appar-
ently, the prediction would be that in the presence of dissolution a nonzero ∆pdiss exists that can
be measured as a well-defined increase in h over the equivalent NDI capillary rise.

This argument can in fact be made more precise by reference to the Navier-Stokes equation.
The key observation is that the Navier-Stokes equation of motion also embodies static equilibrium.
That is, equation 2.14 reduces to

∇p =−ρ~g (2.17)
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In other words, just like capillary flow, the hydrostatic equilibrium of capillary rise is a man-
ifestation of combining the Navier-Stokes equation with the Laplace pressure difference across a
curved meniscus. Therefore, the prediction of an increased capillary rise in the presence of disso-
lution is based on the same footing as the prediction of equation 2.13 and, in addition, a capillary
rise experiment could be used to measure ∆pdiss. Since, by construction, this is an equilibrium
experiment the measured rise must be solely determined by the final composition. The latter com-
position, strictly speaking, is determined by the chemical potentials, µCu and µNi. In other words,
the final composition formally is the composition of the bulk system with which the pore is in
actual or virtual equilibrium.

Alternatives to equation 2.13.

The arguments put forth above call into question the validity of equation 2.13 in its present
form. Clearly, the simulations of WB establish that under dissolution conditions, and at a suffi-
ciently high temperature , liquid Cu penetrates a Ni pore about twice as fast. It is pertinent therefore
to consider other explanations for this observations that can do not suffer from the same criticisms.

Naturally, the first candidate for an alternative is to consider the effect of the dissolution process
on the thermodynamic properties. As Ni dissolves into the Cu liquid changes are expected to occur
in γlv, η and cosθ [1]. In principle, one could also consider changes in the temperature (due to
the heat of mixing), the vapor pressure, and the liquid density. However, thermostatting keeps
the temperature, T , constant, the metal vapor pressure is neglible at the temperature considered,
while the liquid density (whose change is likely negligible also) does not enter the at level of the
Washburn analysis (but is indirectly present through η).

With available data for cosθ , but without presenting data for the composition dependence of
γlv and η , WB do briefly discuss the possibility of thermodynamic property changes. The authors
conclude that the changes would not be sufficient to explain the near doubling of the infiltration
rate.

An alternative explanation for the increased infiltration can be pursued by focusing on the
channel shape. Case [d] corresponds to NDI at a high temperature (1750K), and figure 1 of WB [3]
1 shows that a considerable amount of dissolution of Ni into Cu has taken place. In fact, that figure
shows that the slit has tapered quite significantly opening up more toward the entrance. Since the
picture shown is a projection, the actual tapering may even be more severe. It is, therefore, useful
to consider the effects of tapering on channel flow.

1Figure 1 of WB [3] shows snapshots from MD simulations of liquid Cu infiltration into a Ni channel at T = 1750
K; results are shown for the non-dissolutive and the dissolutive simulations at varying simulation times: (a) t = 400 ps,
(b) t = 900 ps and (c) t = 1400 ps.
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Laminar flow in a slightly tapered cylindrical tube

Consider the case of no-slip and a tapered cylindrical channel. let the radius at the inlet be R0
and at a distance L further downstream be RL, that is

dR
dx

=
RL−R0

L
(2.18)

From equation 2.4 we have for the volumetric flow rate Q = πR2 < vx >:

Q =
π∆pR4

8ηL
(2.19)

which we can rearrange to

d p
dx

=− 8ηQ
πR(x)4 (2.20)

where we replaced the pressure drop by its gradient −d p/dx (see equation 2.2). Rearranging
this we can write

d p = − 8ηQ
πR(x)4 dx

= − 8ηQL
π(RL−R0)

R−4dR

(2.21)

where we used equation 2.18 to change variables from x to R. Upon integrating

p0− pL

L
=

8ηQL
3π(RL−R0)

[
R−3

0 −R−3
L
]

(2.22)

or in terms of the flow rate:

Q =
π∆pR4

L
8ηL

[
3λ 3

1+λ +λ 2

]
=

π∆pR4
L

8ηL
fC(λ ) (2.23)
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Figure 2.3. The tapering functions for cylindrical and slit-like ge-
ometry. The solid line denotes fC (equation 2.23) while the dashed
line represents fS (equation 2.29) .

where λ ≡ R0/RL. The tapering effect is expressed by fC(λ ) and, as expected, when R0 = RL
fC(λ ) = 1 and we recover the the straight channel result (cf. equation 2.3).

Laminar flow in a slightly tapered slit

The problem of flow through a slightly tapered slit-like channel of width w proceeds in an
analogous fashion. Let the diameter at the inlet be D0 and at a distance L further downstream be
DL, that is

dD
dx

=
DL−D0

L
(2.24)

From equation 2.10 we have for the volumetric flow rate Q = wD < vx >:

Q =
wD3∆p
12ηL

(2.25)

which we can rearrange to

23



d p
dx

=− 12ηQ
wD(x)3 (2.26)

where we replaced the pressure drop by its gradient −d p/dx (see equation 2.2). Rearranging
this we can write

d p = − 12ηQ
wD(x)3 dx

= − 12ηQL
w(DL−D0)

D−3dD

(2.27)

where we used equation 2.24 to change variables from x to D. Upon integrating

p0− pL

L
=

12ηQL
2w(DL−D0)

[
D−2

0 −D−2
L
]

(2.28)

or in terms of the flow rate:

Q =
∆pwD3

L
12ηL

[
2λ 2

1+λ

]
=

∆pwD3
L

12ηL
fS(λ ) (2.29)

where λ ≡ D0/DL. The tapering effect is expressed by fS(λ ) and, as required, when D0 = DL
fS(λ ) = 1 and we recover the the straight channel result (cf. equation 2.10).

The two expressions, fC(λ ) and fS(λ ) are shown in figure 2.3. Notice that the deviation from
linearity is stronger for the cylindrical case. This is to be expected, as the tapering in the slit affects
only one dimension.

Now, returning figure 1(c) of WB [3] we note that the channel of the NDI case has become
significantly tapered. An estimate for the ratio λ = D0/DL gives about 1.3, and hence fS(1.3) =
1.47. Thus, at the t = 1400 ps the volumetric flow rate would be expected to be larger by a factor
of 1.5. This is likely a lower bound, as the projection used to produce figure 1(c) of WB [3] could
mask a slightly larger tapering.
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It is reasonable to conclude therefore that tapering could account for the increased rate of
infiltration seen in the dissolution case, especially given the the uncertainties associated with the
driving force, i.e. the combination γlvcosθ/η .

Proposed work

In view of the analysis presented above a number of calculations suggest themselves. Restrict-
ing these to molecular dynamics (or Monte Carlo) the following would be worthwhile:

1. Using the WB geometry (and under NDI conditions) include a gravitational force, Fg, in the
x-direction and perform an equilibrium simulation of capillary rise. Measuring the height,
h, as a function of xNi (and possibly |Fg|) will yield a direct measurement of
∆p = γlvcosθ/D. This can be compared to the individual composition dependence of γlv
and cosθ . For details see Appendix

2. Repeat the above calculation under DI conditions. Some care must be taken to make sure
that the capillary does not change its size, D, too much as Ni atoms dissolve into the Cu
liquid. It would seem that the rise would have to be identical to that of a NDI simulation,
provided the capillary size remains essentially unaffected.

3. Perform one or two WB capillary infiltration simulations for a Cu-Ni mixture at fixed xNi
(i.e., using NDI conditions). This type of simulation has the attractive feature that it
embodies all the composition dependence (i.e., of γlv,cosθ and η), without knowing the
actual values. Need to specify the mass for Cu and Ni. To compare with reference [3],
equal masses should be used.

4. Calculate γlv as a function of xNi, the Ni concentration, at T = 1750K and possibly
T = 1500K.

5. Calculate the equilibrium cosθ as a function of xNi. This is probably best done in a
symmetric slit capillary, employing periodic boundary conditions in the x− and
z−directions. This will create two menisci that can each be used to extract the radius of
curvature. In principle one could also use a sessile drop. In order to cover the relevant range
of xNi, one should estimate the Ni composition in the flow simulation.

6. Calculate η as a function of xNi. This is probably best done with the Green-Kubo
formalism, as it is guaranteed that the mixture will stay homogeneous and the molefraction
known. Need to specify the mass for Cu and Ni.

7. Use the composition dependence of the γcosθ/η factor to predict the infiltration rate as a
function of xNi.
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Appendix

Capillary Rise

The analysis of a capillary rise experiment starts with noting that the pressure in a horizontal
plane (normal to the direction of gravity) must be the same everywhere. Thus, for a pure liquid
column of height h the pressure difference ∆p must equal mgh(ρl−ρv) where, ρα denotes the
number density of phase α and m is the atomic mass.

An exact treatment recognizes that the meniscus height z varies with position y. Formally, for
every point (x,y) on the meniscus the local curvature must correspond to the local value
∆p = mgx(ρl−ρv). In practice, one would calculate ∆p from a simulation as

∆p(y) =
m < N(y)>

∆yLz
(2.30)

Where < N(y)> denotes the ensemble average of the number of atoms in a rectangular slice of
width ∆y, taking the size of the simulation box in the periodic z−direction as Lz. Note that we
have assumed that the vapor pressure is essentially zero. Note also that this expression appears a
little more direct since it avoids having to determine the local height x. This is so because the
density ρl(y) =< N(y)> /x∆yLz also depends on the value of x. An other way of stating this is
that the latter expression represents the self-consistent interpretation of ρl .

To improve statistics one would average equation 2.30 over the width of the capillary. This is
equivalent to setting ∆y = D.

The key observation is that a capillary rise (computer) experiment directly determines the term
∆p = 2γlvcosθ/D which is the relevant combination determining capillary flow, or the Washburn
equation. Its use is a matter of self-consitency that avoids the separate measurement of γlv and an
ambiguous interpretation of cosθ .
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Chapter 3

Nonequilibrium Surface Tensions

Introduction

In Chapter 2 we discussed the infiltration of liquid in a capillary, which for equilibrium liquids
can be described quite well with the Lucas-Washburn equation. The infiltration length L was
shown to be proportional to the square root of time, and the constant of proportionality was
proportional to the product γlvcos(θ). The equation holds for equilibrium fluids, whether pure or
mixed. In either case there exists a well-defined liquid-vapor surface tension, γlv and a
well-defined contact angle, θ .

We then considered the situation of dissolutive wetting, where the solid boundary atoms dissolve
into the liquid. The basic question we addressed was how does the Lucas-Washburn equation
need to be modified? Computer experiments show that, in some cases, there is a factor of up to
two increase when dissolution takes place.

Whereas Webb and Hoytt suggested the emergence of an additive term, we showed in Chapter 2
that this cannot be the correct functional form, as it would imply infiltration at zero contact angle,
or even at negative contact angles if the WB dissolution term was sufficiently large. Instead, it
would appear that the correct approach would involve an implicit dependence on time of both the
tension and the contact angle, namely through:

γlv(x(t)cos(θ(x(t)) (3.1)

where x(t) denotes the composition of the liquid near the contact angle. This is time-dependent,
since the dissolution is considered to continue to take place at the solid-liquid interface. Clearly at
t = 0 when dissolution is considered to be starting, the product 3.1 is an equilibrium property of
the liquid at the original equilibrium liquid composition. Similarly, for a drop sitting on a surface,
at infinite times the product is that of the final equilibrium composition when equilibrium between
the dissolving wall and the liquid has been reached. At that point the chemical potential gradients
of all components vanish. Strictly speaking our notation should reflect the fact that the
composition varies spatially, throughout the liquid. Formally, we should denote the composition
by x(t,r), but we will assume in what follows that that is implied.

The question is what is the value for γlvcos(θ) at times in between, and how can we attempt to
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predict it? Because the phenomenon we envisage is nonequilbrium in nature, there is 1) a priori no
reason to assume that a simple answer exists for all cases, and 2) the expectation that the answer
depends on the nature of the nonequilbrium situation. Thus, for a droplet in contact with a solid
surface, the composition will change throughout the droplet, starting at the solid-liquid interface
until the solubility product is reached and the composition becomes uniform. As this happens the
contact area will change with time in response to changes in the product 3.1. The contact area
may increase, decrease, or develop in a nonmonotonic fashion. On the other hand, for a capillary
in contact with an infinite reservoir, the composition at the interface might reach at least a
quasi-steady state as the meniscus continues to infiltrate the capillary, albeit with reduced speed.

Nonequilibrium Surface Tensions

To develop a description of dynamic wetting requires us to provide a theory to predict 3.1, or
more simply put to predict the surface tension of an interface undergoing compositional changes.
For ease of discussion we will concentrate on a surface that dissolves into the liquid, We will
assume that the nature of the interface does not noticeably change in other ways, because the total
amount of dissolution is small or because the dissolved atoms are replenished. This is a problem
that has apparently not received much attention, since a paper by Ilan Aksay et al. in 1974. Which
we will describe below.

A Brief Review of Surface Functions

Before we turn to the approach of Aksay et al.we briefly review surface functions. Consider a
two-phase system, phase α coexisting with phase β . For convenience we assume that the two
phases are separated by a planar interface thanks to a small gravitational field. It is possible to
identify a specific surface contribution to thermodynamic functions such as the energy, U , and the
Helmholtz free energy F . We assume that phases α and β occupy a volume V , and our first task is
to assign a volume to each of the phases, that add up to the total volume,

V =V α +V β (3.2)

There is no unique way to do this. Instead, a choice has to be made as to the location of a
mathematical plane that divides space between α and β . This plane has to be orthogonal to the
surface normal, of the interface separating the two phases. That surface normal can always be
unambiguously defined. However, the height of the dividing plane, the so-called Gibbs dividing
plane, is arbitrary. This implies that the value of each of the surface functions we will introduce
below will depend on the particular choice of dividing plane. Obviously, convenient choices are
planes close to the visible interface.

Away from the the interface we can assign unambiguous intensive properties to each of the
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phases, i.e., we can assign number densities, energy densities and free energy densities

ρ
α
i = δnα

i /δV α (3.3)
φ

α = δUα/δV α (3.4)
ψ

α = δFα/δV α (3.5)

with similar quantities defined for phase β . The index i denotes a component (species). Finally,
from the above we can define extensive properties for phases α and β , as

nα = ρ
αV α (3.6)

Uα = φ
αV α (3.7)

Fα = FαV α (3.8)

In general, the sums like nα +nβ , Uα +Uβ , etc, are not equal to the totals of the actual two-phase
system, n, U etc, and it is precisely the the differences that define the surface contributions, ns, U s

etc. Thus,

nα +nβ +ns = n (3.9)
Uα +Uβ +U s =U (3.10)
Fα +Fβ +Fs = F (3.11)

Note that the definition of surface functions does not rely on any particular interpretation of the
interface (e.g., sharp or diffuse). It merely says there is one. Also, the values of the surface
functions, because of the choice in dividing plane, are arbitrary, and so can have both positive and
negative values. For one component systems, one often chooses the dividing plane location such
that it makes ns = 0. This is known as the equimolar surface. As soon as such a choice is made
then all the values of the surface functions are fixed (i.e., U s, Fs, etc).

If the two-phase system contains multiple components then one can no longer define a dividing
plane for which all the ns

i vanish. It is still possible to select an equimolar surface for a certain
component i or, alternatively, one could decide to pick the plane for which the sum of all the
products µins

i adds up to zero. That is, µ ·ns = 0.

The connection between Fs and the surface tension

The total free energy is homogeneous function of the volume V and the surface area A

F =−pV + γA+µ.n (3.12)
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For the individual bulk phase α we have

Fα =−pV α +µ.nα (3.13)

and similarly for phase β . To obtain an expression for Fs, we subtract the bulk phase terms from
equation 3.12. Thus,

Fs = γA+µ.ns or (3.14)
γ = Fs/A−µ.ns (3.15)

This establishes the connection between the surface tension and the so-called specific surface
energy Fs/A. Whereas the surface tension is independent of the choice of dividing surface both
terms on the right hand side of the equation are individually dependent on its location. We stress
that it is only under the special conditions that the dividing surface is placed such that µ ·ns = 0
that we have Fs/A = γ .

We define surface densities (sometimes referred to as excess densities) by dividing the surface
quantities by A. For instance,

Γi = ni/A (3.16)
φ

s =U s/A (3.17)
ψ

s = Fs/A (3.18)

Γi is often referred to as the adsorption of species i. With this notion we can write:

γ = ψ
s−∑

i
µiΓi (3.19)

This is the notation used by Aksay et al.

The approach of Aksay et al.

Aksay et al. consider the effects of mass transfer of the kind we described (e.g. dissolution) at a
solid liquid interface. Generically, they refer to this process as a chemical reaction, which is
helpful in other ways as well. For the dissolution to occur, the total free energy, ∆G, must be
decreasing. Aksay et al. then point out that the initial fee energy change of the the liquid is
entirely attributable to changes in free energy in the interfacial region. Thus, they ad-hoc
postulate that the decrease in specific interfacial free energy, ψs = Fs/A, is equal to the total
change in free energy per unit area ∆Gsl/A. They then quote equation 3.19 above,

γ = ψ
s−∑

i
µiΓi
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to relate the change in surface tension, ∆γ , to ∆ψs. Without explanation they simply equate the
two. In other words, they ignore the contribution to the change of the last term of equation 3.20.
Therefore the authors assume that ∆(∑i µiΓi) = 0.

Even if the dividing plane is located such that ∑i µiΓi = 0, that does not mean that the difference
∆(∑i µiΓi) vanishes. Dissolution of the wall into the liquid increases the amount of one of the
species (or adds an entirely new species), and this must make ∆(∑i µiΓi) 6= 0 . Furthermore,
equating ∆γ = ∆ψs ≈ ∆G/A suggests that ∆γ < 0, always. That is because a spontaneous process
such as a surface reaction or dissolution always has ∆G≤ 0. It is not difficult to use statistical
mechanics to demonstrate that dissolution (or surface chemical reactions in general) could just as
easily give rise to increases in the surface free energy.

A tractable example

To further explore the consequences of the Aksay ansatz we now focus on a simple thought
experiment involving an isotope mixture. Consider an initially pure fluid A at a surface, and the
solid surface dissolving an isotope B of that species into the liquid phase. Clearly, this dissolution
process will produce a decrease in the free energy of the liquid, which will have no enthalpic
contribution, and which is equal to an amount given by the ideal entropy of mixing. Yet, the
surface tension of the pure fluids A and B and all their mixtures are the same, as the molecular
interactions are all independent of the type of isotope (c.f., equation ?? below). In other words,
we have ∆γ = 0, and ∆ψs ≈ ∆G/A 6= 0. Then by equation 3.20 we can conclude that
∆(∑i µiΓi) 6= 0. In fact, we must have ∆ψs = ∆(∑i µiΓi).

Next, we consider how to interpret the mixing term ∆G. Consider the dissolution of nd wall atoms
(species j, say) into the liquid phase, or Γd = nd/A atoms per unit area. To attribute an amount
∆G to this dissolution we can only proceed after we state the volume of liquid that the wall atoms
dissolve into. In other words, it is only after we specify a profile for those atoms, or equivalently
the equivalent thickness of the liquid layer (”slab”) that we can attempt to approximate the change
∆G. We assume we know the initial liquid composition, but to determine ∆G we must know the
final composition of the thin slab, or the composition profile x j(z) for dissolving component j.

Statistical Mechanics

As is often the case with interfacial phenomena, turning to explicit problems and using the tried
approaches of statistical mechanics can help elucidate the issues. In a previous report
(SAND2013-8278) we have considered the case of an isomerization reaction at a planar wall, and
shown how upon some further simplification (e.g., introducing the ideal solution assumption or
the ideal gas assumption) one can formulate a tractable case that ultimately allows for the
calculation of the surface tension as a function of time. That example mapped the problem of
assigning a value to the nonequilibrium time-dependent surface tension γ(t) onto the equilibrium
surface tension illustration. We refer the interested reader to that report for more information.
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Chapter 4

Modeling of Additive Manufacturing
Processes: Selective Laser Melting

Selective laser melting of powder beds is a process whereby a small amount of powder (10-1000
powder particles) are heated by laser, respond by melting, cool and ultimately resolidify.

The typical particle size distribution has an average diameter of 80µm and ranges from 45 -
115µm, and is assumed to be normally distributed. However, the employed average sizes can be
as small as 50µm. The layer thickness employed varies, but typically falls in the range 50 -
200µm. The electron beam used has a maximum power of 3500 W, and a spot size of 100 - 400
µm.

Whereas an isolated cluster of such spheres would always form a spherical droplet, centered on
the center of mass of the original cluster, a collection of powder particles in contact with
surrounding particles (that do not melt), behaves quite differently. The collection of surrounding
particles presents as a porous surface to the melt pool, and consequently we can expect capillary
to dominate the flow of the droplet. After it has more or less come to rest, the shape of the pool
and its connections with the surrounding surfaces.

Thus, it is the precise location of the powder particles that melt, together with the surrounding
particles determine the final location and shape of the melt pool. This includes, therefore the
occurrence of voids that are entrapped inside melt pools as well as between melt pools are their
surrounding solid metal surfaces.

Given that a packing of 10 to 1000 particles is subject to large variations (no two piles are alike),
SLM can be expected to exhibit large variations. It is precisely the stochastic nature of the process
(i.e., the placement of powder particles) that translates in to variability upstream in the process. In
particular, the occurrence of voids, the size and shapes of these voids is a direct reflection of the
particulate nature of the starting material. Surface finish also is a different manifestation of
exactly the same underlying physics.

The surrounding bed of powder particles acts in two ways on the emerging melt pool: 1) by
inducing capillary flow, 2) through the liquid-solid interfaces it controls the heat flow out of the
melt pool. The key observation is that these two aspects are local properties of the powder, and
hence they ar subject to extreme variability. In contrast, the global thermal behavior of a large
volume of the powder bed is a suitable spatial average over a large fraction of the granule

33



medium. As such it has a well-defined conductivity.

From the above It is clear therefore that any serious attempt at SLM modeling must start at the
powder level. Any alternative homogeneous, continuum level approach will end up skipping over
the essential physics, and cannot be expected to predict essential properties of the final
resolidified metal part.

Once a proper model is employed for the melt pool one can consider further physical phenomena.
An example is the evaporation of a Al, which has a low melting temperature and hence is more
volatile than either Ti or V with which it is mixed in the alloy known as Ti-6Al-4V (or ”Ti 6-4”,
this titanium alloy includes 6 w% aluminum and 4 w% vanadium, and less than 0.25 w% Fe and
less than 0.2 w% O). From the diffusion coefficient of Al in Ti-6Al-4V, the total surface area (an
possibly the curvature), and the thermal history one can estimate the final Al concentration inside
the the melt pool. In addition, the concentration inside the powder particles will differ, because of
size and manufacturing processes. Together, these effects produce a variation of the composition
throughout the final AM part.

One expects that the spatial variation in composition will also be reflected in variations in the
surface tensions and contact angles. The magnitude of the variation in (liquid-vapor) surface
tension can be estimated from an equilibrium relationship between tension and molefraction. In
the absence of this one could attempt to use modeling to determine the relationship.
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Chapter 5

Conclusion

This report describes in detail what research and development is needed to use modeling to help
support additive manufacturing and selective laser melting in particular. We have highlighted the
issue of voids, which are inherent in the melting and resolidification of complex powder packings.
However, we have also mentioned compositional variations due to preferential evaporation of Al.
Modeling will enable a path forward in providing a science-based prediction of frequency of
voids, their size and their location. At the heart of the modeling is the description of dynamic
wetting in complex geometries. This phenomenon is further complicated by the presence of
compositional variation in the melt pool, which affect the wetting and spreading. The report
identifies and addresses the fundamental aspects of dynamic wetting in the context of additive
manufacturing.
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